高注释成本是将现代深度学习架构应用于临床相关的医疗用例的大量瓶颈,这使得新颖算法的需要从未标记的数据中学习。在这项工作中,我们提出了一种自我监督的方法,可以从未标记的医学图像和遗传数据的大型数据集中学习。我们的方法使用对比损耗对准特征空间中的图像和几种遗传模式。我们设计我们的方法,以将每个人的多种模式集成在同一模型端到端,即使当可用的方式因个人而异)也是如此。我们的程序优于所有在所有评估的下游基准任务上表达最先进的自我监督方法。我们还适应基于梯度的可解释性算法,以更好地了解图像和遗传模式之间学习的跨模型关联。最后,我们对我们模型学到的特征进行了基因组关联研究,揭示了图像与遗传数据之间的有趣关系。
translated by 谷歌翻译
尽管社交媒体中的Echo Chambers受到了相当大的审查,但仍缺少用于检测和分析的一般模型。在这项工作中,我们旨在通过提出一个概率的生成模型来填补这一空白,该模型通过一系列具有一定程度的回声室行为来解释社交媒体足迹(即社交网络结构和信息传播)。并以极性。具体而言,回声室被建模为可渗透到具有相似意识形态极性的信息的社区,并且对相反的倾向信息不渗透:这允许将回声室与缺乏明确意识形态保持一致的社区区分。为了了解模型参数,我们提出了对广义期望最大化算法的可扩展的随机适应,该算法优化了观察社会联系和信息传播的关节可能性。合成数据的实验表明,我们的算法能够及其具有回声室行为和意见极性的程度正确地重建地面真相社区。关于两极分化社会和政治辩论的现实数据的实验,例如英国脱欧公投或COVID-19疫苗运动,证实了我们提议在检测回声室方面的有效性。最后,我们展示了我们的模型如何提高辅助预测任务的准确性,例如立场检测和未来传播的预测。
translated by 谷歌翻译
可以将一组个人或组织之间的战略互动建模为在网络上玩的游戏,在网络上,玩家的回报不仅取决于他们的行动,还取决于邻居的行动。从观察到的游戏结果(平衡动作)中推断网络结构是一个重要的问题,对于经济学和社会科学中的许多潜在应用。现有方法主要需要与游戏相关的效用函数的知识,在现实世界中,这通常是不现实的。我们采用类似变压器的体系结构,该体系结构正确说明了问题的对称性,并在没有明确了解效用功能的情况下学习了从平衡动作到游戏网络结构的映射。我们使用合成和现实世界数据在三种不同类型的网络游戏上测试我们的方法,并证明其在网络结构推理中的有效性和优于现有方法的卓越性能。
translated by 谷歌翻译
在以人为本的环境中工作的机器人需要知道场景中存在哪种物体,以及如何掌握和操纵不同情况下的各种对象,以帮助人类在日常任务中。因此,对象识别和抓握是此类机器人的两个关键功能。最先进的解决物体识别并将其抓握为两个单独的问题,同时都使用可视输入。此外,在训练阶段之后,机器人的知识是固定的。在这种情况下,如果机器人面临新的对象类别,则必须从划痕中重新培训以结合新信息而无需灾难性干扰。为了解决这个问题,我们提出了一个深入的学习架构,具有增强的存储器能力来处理开放式对象识别和同时抓握。特别地,我们的方法将物体的多视图作为输入,并共同估计像素 - 方向掌握配置以及作为输出的深度和旋转不变表示。然后通过元主动学习技术使用所获得的表示用于开放式对象识别。我们展示了我们掌握从未见过的对象的方法的能力,并在模拟和现实世界中使用非常少数的例子在现场使用很少的例子快速学习新的对象类别。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译
Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclideanstructured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graphand 3D shape analysis and show that it consistently outperforms previous approaches.
translated by 谷歌翻译